No Image

Постоянный электрический ток понятие

СОДЕРЖАНИЕ
0 просмотров
12 декабря 2019

Постоянный ток — электрический ток, не изменяющийся по времени и по направлению. За направление тока принимают направление движения положительно заряженных частиц. В том случае, если ток образован движением отрицательно заряженных частиц, направление его считают противоположным направлению движения частиц.

Строго говоря, под "постоянным электрическим током" следовало бы понимать "электрический ток постоянный по величине", соответственно математическому понятию "постоянная величина". Но в электротехнику этот термин был введен в значении "электрического тока, постоянного по направлению и практически постоянного по величине".

Под "практически постоянным по величине электрическим током" понимают ток, изменения которого во времени столь незначительны по величине, что при рассмотрении явлений в электрической цепи, по которой проходит такой электрический ток, этими изменениями вполне можно пренебречь, а следовательно, можно не учитывать ни индуктивности, ни емкости электрической цепи.

Наиболее распространенные источники постоянного тока — гальванические элементы, аккумуляторы, генераторы постоянного тока и выпрямительные установки.

В электротехнике для получения постоянного тока используют контактные явления, химические процессы (первичные элементы и аккумуляторы), электромагнитное наведение (электромашинные генераторы). Широко применяется также выпрямление переменного тока или напряжения.

Из всех источников э. д. с. химические и термоэлектрические источники, а также так называемые униполярные машины являются идеальными источниками постоянного тока. Остальные устройства дают пульсирующий ток, который при помощи специальных устройств в большей или меньшей мере сглаживается, лишь приближаясь к идеальному постоянному току.

Для количественной оценки тока в электрической цепи служит понятие силы тока.

Сила тока — это количество электричества Q, протекающее через поперечное сечение проводника в единицу времени.

Если за время I через поперечное сечение проводника переместилось количество электричества Q, то сила тока I=Q/ t

Единица измерения силы тока — ампер (А).

Плотность тока — это отношение силы тока I к площади поперечного сечения F проводника — I/F. (12)

Единица измерения плотности тока — ампер на квадратный миллиметр (А/мм 2 ).

В замкнутой электрической цепи постоянный ток возникает под действием источника электрической энергии, который создает и поддерживает на своих зажимах разность потенциалов, измеряемую в вольтах (В).

Зависимость между разностью потенциалов (напряжением) на зажимах электрической цепи, сопротивлением и током в цепи выражается законом Ома . Согласно этому закону для участка однородной цепи сила тока прямо пропорциональна значению приложенного напряжения и обратно пропорциональна сопротивлению I = U/R ,

где I — сила тока. A, U— напряжение на зажимах цепи В, R — сопротивление, Ом

Это самый важный электротехнический закон. Подробнее о нем смотрите здесь: Закон Ома для участка цепи

Работу, совершаемую электрическим током в единицу времени (секунду), называют мощностью и обозначают буквой Р. Эта величина характеризует интенсивность совершаемой током работы.

Мощность P=W/t= UI

Единица измерения мощности — ватт (Вт).

Выражение мощности электрического тока можно преобразовать, заменив на основании закона Ома напряжение U произведением IR. В результате получим три выражения мощности электрического тока P = UI= I 2 R= U 2 /R

Большое практическое значение имеет то, что одну и ту же мощность электрического тока можно получить при низком напряжении и большой силе тока или при высоком напряжении и малой силе тока. Этот принцип используют при передаче электрической энергии на расстояния.

Ток, протекая по проводнику, выделяет теплоту и нагревает его. Количество теплоты Q, выделяющейся в проводнике определяют формулой Q = I 2 Rt.

Эту зависимость называют законом Джоуля — Ленца .

На основании законов Ома и Джоуля — Ленца можно проанализировать опасное явление, которое часто возникает при непосредственном соединении между собой проводников, подводящих электрический ток к нагрузке (электроприемнику). Это явление называют коротким замыканием , так как ток начинает протекать более коротким путем, минуя нагрузку. Такой режим является аварийным.

На рисунке приведена схема включения лампы накаливания E L в электрическую сеть. Если сопротивление лампы R — 500 Ом, а напряжение сети U = 220 В, то ток в цепи лампы будет I = 220/500 = 0,44 А.

Схема, поясняющая возникновение короткого замыкания

Рассмотрим случай, когда провода, идущие к лампе накаливания, соединены через очень малое сопротивление ( R ст — 0,01 Ом), например толстый металлический стержень. В этом случае ток цепи, подходя к точке А, будет разветвляться по двум направлениям: большая его часть пойдет по пути с малым сопротивлением — по металлическому стержню, а небольшая часть тока I л.н — по пути с большим сопротивлением — лампе накаливания.

Определим ток, протекающий по металлическому стержню: I = 220/0,01 =22 000 А.

При коротком замыкании (к.з) напряжение сети будет меньше 220 В, так как большой ток в цепи вызовет большую потерю напряжения, и ток, протекающий по металлическому стержню, будет несколько меньше, но тем не менее во мною раз превышать ток, потреблявшийся ранее лампой накаливания.

Как известно, в соответствии с законом Джоуля-Ленца ток, проходя по проводам, выделяет теплоту, и провода нагреваются. В нашем примере площадь поперечного сечения проводов рассчитана на небольшой ток 0,44 А.

При соединении проводов более коротким путем, минуя нагрузку, по цепи будет протекать очень большой ток — 22000 А. Такой ток вызовет выделение большого количества теплоты, что приведет к обугливанию и возгоранию изоляции, расплавлению материала проводов, порче электроизмерительных приборов, оплавлению контактом выключателей, ножей рубильнике и т. п.

Источник электрической энергии, питающий такую цепь, может быть поврежден. Перегрев проводов может вызвать пожар. Вследствие этого при монтаже и эксплуатации электрических установок, чтобы предупредить непоправимые последствия короткого замыкания, необходимо соблюдать следующие условии: изоляция проводов должна соответствовать напряжению сети и условиям работы.

Площадь поперечною сечения проводов должна быть такой, чтобы нагревание их при нормальной нагрузке не достигало опасного значения. Места соединений и ответвлений проводов должны быть качественно выполнены и хорошо изолированы. В помещении провода должны быть проложены так, чтобы они были защищены от механических и химических повреждений и от сырости.

Чтобы избежать внезапного, опасного увеличения тока в электрической цепи при коротком замыкании, ее защищают с помощью предохранителей или автоматических выключателей.

Существенный недостаток постоянного тока состоит в том, что его напряжение сложно повысить. Это затрудняет передачу электрической энергии на постоянном токе на большие расстояния.

Читайте также:  Плиты гефест стеклокерамика отзывы

Постоянный ток – это упорядоченное движение заряженных частиц, движущихся в одном направлении.

По теории данные заряженные частицы относят к носителям тока. В проводниках и полупроводниках такими носителями являются электроны, в электролитах – заряженные ионы, в газах – электроны и ионы. Металлы характеризуются перемещением только электронов. Отсюда следует, что электрический ток в них – это движение электронов проводимости.

Результат прохождения электрического тока в металлах и электропроводящих растворах заметно отличается. Наличие химических процессов в металлах при протекании тока отсутствует. В электролитах под воздействием тока происходит выделение ионов вещества на электродах. Различие заключается в отличии носителей зарядов металла и электролита. В металлах – это свободные электроны, отделившиеся от атомов, в растворах – ионы, атомы или их группы с зарядами.

Необходимые условия существования электрического тока

Первое необходимое условие существования электрического тока любого вещества – наличие носителей заряда.

Для равновесного состояния зарядов необходимо равнение нулю разности потенциалов между любыми точками проводника. При нарушении данного условия, заряд не сможет переместиться. Отсюда следует, что второе необходимое условие существования электрического тока в проводнике – создание напряжения между некоторыми точками.

Упорядоченное движение свободных зарядов, возникающее в проводнике как результат воздействия электрического поля, называют током проводимости.

Такое движение возможно при перемещении в пространстве заряженного проводника или диэлектрика. Подобный электрический ток получил название конвекционного.

Механизм осуществления постоянного тока

Для постоянного прохождения тока в проводнике следует подсоединить к проводнику или их совокупности устройство, в котором постоянно происходит процесс разделения электрических зарядов для поддержания напряжения в цепи. Данный механизм получил название источника тока (генератора).

Силы, разделяющие заряды, называют сторонними. Они характеризуются неэлектрическим происхождением, действуют внутри источника. При разделении зарядов сторонние силы способны создать разность потенциалов между концами цепи.

Если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равняется нулю. Отсюда следует, что суммарная работа сил A , действующих на заряд, равна работе сторонних A s t . Определение физической величины, характеризующей источник тока, ЭДС источника ε запишется как:

ε = A q ( 1 ) , где значение q подразумевает положительный заряд. Его движение происходит по замкнутому контуру. ЭДС – это не сила. Единица измерения ε = В .

Природа сторонних сил различна. В гальваническом элементе они являются результатом электрохимических процессов. В машине с постоянным током такой силой является сила Лоренца.

Основные характеристики электрического тока

Условно принято считать направление тока за направление движения положительных частиц. Отсюда следует, что направление тока в металлах характеризуется противоположным направлением относительно направления движения частиц.

Электрический ток обладает силой тока.

Сила тока I – скалярная величина, равняется производной от заряда q по времени для тока, который проходит через поверхность S :

Ток может быть постоянным и переменным. При неизменной силе тока с его направлением по времени ток называют постоянным, а выражение силы тока для него примет вид:

I = q t ( 3 ) , где сила тока рассматривается в качестве заряда, проходящего через поверхность S в единицу времени.

По системе С И основная единица измерения силы тока – Ампер ( А ) .

Плотность – это векторная локальная характеристика. Вектор плотности тока j → способен показывать, каким образом распределяется ток по сечению S . Его направление идет в сторону, куда движутся положительные заряды.

Значение вектора плотности тока по модулю равно:

j = d I d S ‘ ( 4 ) , где d S ‘ является проекцией элементарной поверхности d S на плоскость, перпендикулярную вектору плотности тока, d I – элементом силы, которая идет через поверхности d S и d S ‘ .

Представление плотности в металле возможно по формуле:

j → = — n 0 q e " open=" υ → ( 5 ) , где n 0 обозначается концентрацией электронов проводимости, q e = 1 , 6 · 10 — 19 К л – зарядом электрона, " open=" υ → – средней скоростью упорядоченного движения электронов. Если значение плотностей тока максимальное, то

" open=" υ → = 10 — 4 м с .

Закон сохранения заряда

Основным физическим законом считается закон сохранения электрического заряда. При выборе произвольной замкнутой поверхности S , изображенной на рисунке 1 , ограничивающей объем V количество выходящего электричества в единицу времени ( 1 секунду) из объема V можно определить по формуле ∮ s j n d S . Такое же количество электричества выражается через заряд — ∂ q ∂ t , тогда получаем:

∂ q ∂ t = — ∮ S j n d S ( 6 ) , где j n считается проекцией вектора плотности на направление нормали к элементу поверхности d S , при этом:

j n = j cos a ( 7 ) , где a является углом между направлением нормали к d S и вектором плотности тока. Уравнение ( 6 ) показывает частое употребление производной для того, чтобы сделать акцент на неподвижности поверхности S .

Выражение ( 6 ) считается законом сохранения электрического заряда в макроскопической электродинамике. Если ток постоянен во времени, тогда запись этого закона примет вид:

∮ S j n d S = 0 ( 8 ) .

Найти формулу для того, чтобы рассчитать конвекционный ток при его возникновении в длинном цилиндре с радиусом сечения R и наличием его равномерной скорости движения υ , который заряжен по поверхности равномерно. Значение напряженности поля у поверхности цилиндра равняется E . Направление скорости движения вдоль оси цилиндра.

Основой решения задачи берется определение силы тока в виде:

I = d q d t ( 1 . 1 ) .

Из формулы ( 1 . 1 ) следует, что возможно нахождение элемента заряда, располагающегося на поверхности цилиндра.

Напряженность поля равномерно заряженного цилиндра на его поверхности находится по выражению:

E = σ ε 0 ( 1 . 2 ) , где σ является поверхностной плотностью заряда, ε 0 = 8 , 85 · 10 — 12 К л Н · м 2 . Выразим σ из ( 1 . 2 ) , тогда:

σ = E · ε 0 ( 1 . 3 ) .

Связь поверхностной плотности заряда с элементарным зарядом выражается при помощи формулы:

d q d S = σ ( 1 . 4 ) .

Используя ( 1 . 3 ) , ( 1 . 4 ) , имеем:

d q = E · e 0 d S ( 1 . 5 ) .

Выражение элемента поверхности цилиндра идет через его параметры:

d S = 2 π · R d h ( 1 . 6 ) , где d h является элементом высоты цилиндра. Запись элемента заряда поверхности цилиндра примет вид:

d q = E · ε 0 · 2 h · R d h ( 1 . 7 ) .

Произведем подстановку из ( 1 . 7 ) в ( 1 . 1 ) :

I = d ( E · ε 0 · 2 π · Rdh ) d t = 2 πRε 0 E dh dt ( 1 . 8 ) .

Движение цилиндра идет вдоль оси, тогда запишем:

d h d t = υ ( 1 . 9 ) .

I = 2 π R ε 0 E υ .

Ответ: конвективный ток I = 2 π R ε 0 E υ .

Изменение тока в проводнике происходит согласно закону I = 1 + 3 t . Определить значение заряда, проходящего через поперечное сечение проводника, за время t , изменяющегося от t 1 = 3 с до t 2 = 7 c . Каким должен быть постоянный электрический ток, чтобы за аналогичное время происходило то же значение заряда?

Основа решения задачи – выражение, связывающее силу тока и заряд, проходящий через поперечное сечение проводника:

I = d q d t ( 2 . 1 ) .

Формула ( 2 . 1 ) показывает, что нахождение количества заряда, проходящего через поперечное сечение проводника за время от t 1 до t 2 возможно таким образом:

Читайте также:  Подключение смесителя в ванной к полипропиленовым трубам

q = ∫ t 1 t 2 I d t ( 2 . 2 ) .

Произведем подстановку имеющегося по условию закона в ( 2 . 2 ) для получения:

q = ∫ t 1 t 2 ( 1 + 3 t ) d t = ∫ t 1 t 2 d t + ∫ t 1 t 2 3 t d t = t 2 — t 1 + 3 · t 2 2 t 1 t 2 = ( t 2 — t 1 ) + 3 2 t 2 2 — t 1 2 ( 2 . 3 ) .

q = 7 — 3 + 3 2 ( 7 2 — 3 2 ) = 4 + 3 2 · 40 = 64 ( К л ) .

Чтобы определить постоянный ток для получения силы используется формула:

I c o n s t = q t ( 2 . 3 ) , где t считается временем, за которое поперечное сечение проводника пройдет заряд q .

Тогда время протекания заряда равняется:

t = t 2 — t 1 ( 2 . 4 ) .

Выражение ( 2 . 3 ) примет вид:

I c o n s t = q t 2 — t 1 ( 2 . 5 ) .

Произведем подстановку и вычислим:

I c o n s t = 64 7 — 3 = 64 4 = 16 ( A ) .

Ответ: q = 64 К л . I c o n s t = 16 А . .

1. Понятие электрического тока. Постоянный электрический ток. Виды токов. Условия, необходимые для появления и существования тока. Сила и плотность тока. Единицы измерения.

Электрический ток — это упорядоченное движение заряженных частиц в проводнике.

Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

1. Электрический ток появляется тогда, когда заряженные частицы или тела начинают перемещаться в пространстве под действием не электрических сил (скажем движение потока ионов в комнате под действием потока воздуха)- это токи конвекции

2. Кратковременные токи возникают в диэлектриках в начальный момент поляризации (создании электрического поля) или при располяризации (снятии поля), ибо в этом случае происходит смещение зарядов в диполях; такой вид тока называется током поляризации.

3. Когда под действием сил поля положительные частицы перемещаются по направлению вектора напряженности Е, а отрицательные против него. Такие токи называются токами проводимости. –это такой ток, который обусловлен колебаниями электронов и ионов в среде

Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I — сила тока, q — величина заряда (количество электричества), t — время прохождения заряда.

Единица силы тока 1 Ампер — сила тока, когда через поперечное сечение проводника в 1 секунду проходит заряд в 1 Кулон.

Плотностью тока – сила тока, проходящая через единицу площади поверхности сечения проводника, перпендикулярной направлению скорости направленного движения электрических зарядов.

где j -плотность тока, S — площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

2. Электрический ток в металлах. Опытное доказательство природы носителей электрических зарядов в металлах. Основы классической электронной теории проводимости в металлах.

Представление об электронной природе носителей зарядов в металлах, заложенная в теории Друде и Лоренца, в основе имеет ряд классических опытных доказательств.

Первым из таких опытов является опыт Рикке (1901), в котором в течение года эл. ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Сu,Аl,Сu) одинакового радиуса. Несмотря на то, что общий заряд, прошедший через цилиндры, достигал огромной величины (около 3,5* Кл) никаких изменений в массе крайних металлов обнаружено не было. Это явилось доказательством предположения, что в переносе заряда участвуют частицы чрезвычайно малой массы.

Несмотря на малость массы носителей заряда, они обладают свойством инерции, что и было использовано в опытах Мандельштама и Папалекси, а затем в опытах Стюарта и Толмена, которые раскручивали катушку с очень большим числом витков до огромной скорости (порядка 300 м/с), а затем резко тормозили ее. В результате смещения зарядов вследствие инерции создавало импульс тока, а зная размеры и сопротивление проводника и величину тока, регистрировавшегося в опыте, можно было вычислить отношение заряда к массе частицы, которая оказалась очень близка к величине, которая получается для электрона (1,7* Кл/кг).

Основы классической электронной теории проводимости в металлах

Существование свободных электронов в металлах объясняется тем, что при образовании кристаллической решетки металла ( в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся „свободными" и могут перемещаться по объему. Т.е. в узлах кристаллической решетки располагаются положительные ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, средняя длина свободного пробега электронов при этом порядка м (расстояние между узлами решетки).Электроны проводимости сталкиваются с ионами решетки, передавая им энергию, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде-Лоренца электроны обладают такой же энергией теплового движения, как и молекулы идеального одноатомного газа и при комнатных температурах тепловая скорость электронов будет порядка м/с, все электроны рассматриваются как независимые и для объяснения макроскопических явлений (например, ток) достаточно знать поведение одного электрона, чтобы определить поведение всех электронов. Поэтому такую теорию называют „ одноэлектронным приближением" и не смотря на свою упрощенность она дает некоторые удовлетворительные результаты.

Тепловое хаотическое движение электронов не может привести к появлению тока. При наложении на металлический проводник электрического поля все электроны приобретают направленное движение, величину скорости которого можно оценить по плотности тока- даже при очень больших плотностях (порядка 10 -10 А/м ) скорость упорядоченного движения получается около м/с. Следовательно, при вычислениях результирующую скорость движения электрона (тепловая + упорядоченная) можно заменять на скорость теплового движения.

Встает вопрос, а как же объяснить факт мгновенной передаче электрических сигналов на большие расстояния? Дело в том, что электрический сигнал переносят не те электроны, которые находятся на начале линии передачи, а электрическое поле, имеющее скорость около 3* м/с, вовлекающее в движение практически мгновенно все электроны вдоль цепи. Поэтому электрический ток и возникает практически мгновенно с замыканием цепи

3. Закон Ома для однородного участка цепи (интегральный закон Ома). Сопротивление, удельное сопротивление. Зависимость сопротивления от температуры. Соединение проводников.

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U — напряжение на участке, R — сопротивление участка.

Величину обратную удельной электропроводности называют удельным сопротивлением проводника . Тогда получаем формулу , которая характеризует сопротивление проводника (току) или

В электрических цепях осуществляется соединение проводников последовательное, параллельное и смешанное.

При последовательном соединении выполняются условия:

Читайте также:  От чего помогает грецкий орех

; ;

При параллельном соединении:

; ;

При смешанном соединении сначала выделяются участки последовательно соединенных сопрот. в параллельных участка и определяются общее сопрот. этич участков; затем вычисляются сопрот. параллельных участков и только после этого общее сопротивление всей цепи.

Сопротивление проводников зависит от температуры: для нормального металла с примесями и металла с идеальной кристаллической решеткой в области комнатных температур удельное сопротивление изменяется пропорционально абсолютной температуре по закону:

где — удельное сопротивление при С; 1 / 273К — температурный коэффициент; t —

температура по шкале Цельсия.

Если пренебречь изменениями объема проводника при его нагревании, то сопротивление проводников изменяется по аналогичному закону:

где — удельное сопротивление при С; α ≈ 1 / 273К — температурный коэффициент; t —

температура по шкале Цельсия.

Температурная зависимость сопротивления металлических проводников широко используется для создания термометров сопротивления. Измеряя сопротивление проводника, сопротивление которого при 0°С известно, можно определить температуру окружающей среды (точность достигает до 0,003 К).

4. Закон Ома и Джоуля -Ленца в дифференциальной форме.

Рассмотрим вопрос о том, как будет выглядеть зависимость электрических характеристик тока от напряженности электрического поля и характера движения электронов в металле.

Так как масса электрона в тысячи раз меньше массы ионов металла, то потери энергии электронами при их движении происходят только при столкновении электронов с ионами -неупругое столкновение, при котором электрон полностью теряет энергию, приобретенную в результате действия электрического поля, и начинает новое движение с нулевой скоростью направленного движения.

Плотность тока по формуле можно вычислить, рассматривая ускоренное движение электрона под действием постоянной электрической силы F=E*e в на пути равном расстоянию между двумя ионами (длина пробега l ), и скорость теплового движения ().

В результате получаем следующую зависимость: j=γ*E плотность тока проводимости прямо пропорциональна напряженности электрического поля в проводнике.

6. Соединение источников тока. КПД источника тока. Короткое замыкание цепи. Ток короткого замыкания. Полезная и полная мощность источника.

Соединение источников тока:

Внут.сопрот. батареи:

ε= r=

Наибольшей величины ток достигает при R=0 (ток короткого замыкания):

Ток короткого замыкания — не предусмотренное нормальными условиями работы замыкание через малое сопротивление токопроводящих частей, имеющих различную полярность, подключенных к различным фазам или имеющих различные потенциалы.

Полная мощность, выделяющаяся во всей цепи, будет: P=I*ε=

наибольшая мощность при коротком замыкании:

При увеличении внешнего сопротивления мощность выделяющаяся во внешней цепи падает: P=

Максимальная мощность полезная мощность во внешнем участке цепи получается при R=r: P=

Коэффициент полезного действия можно определить: η=

5. Сторонние силы. Замкнутая электрическая цепь с источником тока. Электродвижущая сила (ЭДС), падение напряжения на участке цепи. Закон Ома для замкнутой цепи. Закон Ома для неоднородного участка цепи.

Разделение зарядов происходит под действием сторонних сил. Сторонние силы действуют лишь внутри источника тока и могут быть обусловлены химическими процессами (аккумуляторы, гальванические элементы), действием света (фотоэлементы), изменяющимися магнитными полями (генераторы) и т.д.

Электрическая цепь – соединение источников постоянного тока с проводниками и другими электрическими элементами.

Замкнутая цепь состоит из двух частей — внутренней и внешней. Внутренняя часть цепи представляет собой источник тока, обладающий внутренним сопротивлением r; внешняя — различные потребители, соединительные провода, приборы и т.д. Общее сопротивление внешней части обозначается R. Тогда полное сопротивление цепи равно r + R.

Электродвижущая сила источника тока – физическая величина , равная отношению работы, совершаемой сторонними силами внутри источника тока при перемещении через него зарядов, к величине этого заряда.

или

где — падение напряжения на внешнем участке цепи;

— падение напряжения на внутреннем участке цепи (источника тока)

Единицей электродвижущей силы в СИ является вольт (В).

Напряжение – разность потенциалов между крайними точками этого участка

Закон Ом для замкнутой цепи: сила тока в замкнутой цепи прямо пропорциональна ЭДС в цепи и обратно пропорциональна общему сопротивлению цепи.

Закон Ома для неоднородного участка цепи:

где R — общее сопротивление неоднородного участка.

8. Разветвленные цепи. Законы Кирхгофа. Правила знаков для токов, падений напряжений и ЭДС.

Разветвлённая цепь

Узлом электрической цепи называют соединение не менее трех проводников, по которым идут токи. Ток, входящий в узел считают положительным, выходящим из узла — отрицательным.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус».

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

где n – число источников ЭДС в контуре;

m – число элементов с сопротивлением в контуре;

– напряжение или падение напряжения на k-м элементе контура.

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю :

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

7. Работа тока на участке цепи и в замкнутой цепи. Интегральный закон Джоуля-Ленца. Мощность тока. Единицы измерения. Удельная мощность тока.

Работа тока — работа электрического поля по переносу электрических зарядов вдоль проводника;

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась. [В*А*с] = [Вт*с]=[Дж]

Мощность тока — отношение работы тока за время t к этому интервалу времени. [В*А]=[Вт]

Если сила тока изменяется со временем, то количество тепла, выделяющееся за время t, вычисляется по формуле:

Удельная мощность тока (w) — количество тепла, выделившееся в единице объёма проводника за единицу времени:

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector