No Image

Потери в трехфазном трансформаторе

СОДЕРЖАНИЕ
1 просмотров
12 декабря 2019

При трансформации электрической энергии часть ее расходуется на покрытие потерь, которые разделяют на электрические и магнитные. Все потери носят активный характер.

Электрические потери обусловлены нагревом обмоток трансформатора при протекании по ним электрического тока и определяются суммой электрических потерь в первичной и вторичной обмотках:

,
где – число фаз в обмотках трансформатора (обычно 1 или 3); – потери короткого замыкания при номинальной нагрузке.

Электрические потери называют переменными, поскольку они зависят от тока нагрузки (пропорциональны квадрату).

Магнитные потери возникают в магнитопроводе трансформатора из-за наличия в нем переменного магнитного потока. Этот поток вызывает в магнитопроводе два вида потерь: потери от вихревых токов в стали магнитопровода и потери от гистерезиса (перемагничивания) , связанные с затратой энергии на уничтожение остаточного магнетизма в ферромагнитном материале магнитопровода:

.

Потери на гистерезис прямопропорциональны частоте перемагничивания ( ), а потери на вихревые токи – ее квадрату ( ). Суммарные магнитные потери принято считать пропорциональными частоте в степени 1,3, т.е. . Поскольку частота тока постоянна, а величина магнитного потока при нагрузке, не превышающей номинальную, практически не меняется, то магнитные потери считают постоянными, т.е. не зависящими от нагрузки. По этой причине магнитные потери практически равны потерям холостого хода .

Коэффициент полезного действия трансформатора – отношение активной мощности на выходе вторичной обмотки (полезная мощность) к активной мощности на входе первичной обмотки (подводимая мощность):

,
где – сумма потерь.

Активная мощность на выходе вторичной обмотки трансформатора:

,
где – количество фаз трансформатора; и – фазные напряжения и токи; – коэффициент мощности нагрузки; – коэффициент нагрузки.

Номинальная мощность трансформатора:

.
В трехфазном трансформаторе

,
где и – номинальные (линейные) напряжения и токи; и – номинальные фазные напряжения и токи.

Учитывая зависимость активной мощности на выходе трансформатора и потерь от нагрузки, получим выражение для расчета КПД:

или .
КПД трансформатора зависит как от величины нагрузки , так и от ее характера ( ), см. рисунок 1.18. Максимальное значение КПД соответствует нагрузке , при которой магнитные потери равны электрическим ( ), откуда

.

Рис. 1.18. Зависимость магнитных, электрических потерь и КПД от относительного вторичного тока нагрузки.

В современных силовых трансформаторах и максимальное значение КПД соответствует нагрузке .

Автотрансформаторы

Автотрансформатор – это трансформатор, в котором кроме магнитной имеется электрическая связь между первичной и вторичной обмотками. Префикс «авто» (греч. «сам») означает, что в автотрансформаторе часть обмотки действует одновременно как первичная и как вторичная обмотка трансформатора.

На рисунке 1.19 показана автотрансформаторная схема включения трансформатора, предназначенная для передачи электрической энергии из входной сети с напряжением U в выходную сеть с напряжением .

Рис. 1.19. Принципиальные схемы однофазного и трехфазного повышающего автотрансформатора, зависимость значений мощностей и от коэффициента трансформации.

В схеме используется двухобмоточный трансформатор с обмотками 1 и 2, расположенными на одном стержне. Для наглядности обмотки 1 и 2 показаны на различных участках стержня по высоте. Первичная обмотка трансформатора 1 включается на напряжение сети низшего напряжения U. Вторичная обмотка включается между зажимом а(Х) входной сети и зажимом х выходной сети таким образом, чтобы ее напряжение добавлялось к напряжению U и увеличивало его до напряжения .

Вторичная обмотка автотрансформатора электрически контактирует с входной и выходной сетями в отличие от обычного трансформатора. Поэтому изоляция вторичной обмотки должна быть рассчитана на наибольшее из напряжений и (в схеме для повышения напряжения по рисунку 1.19 – на напряжение ), а не на напряжение , как в обычном трансформаторе.

Коэффициент трансформации автотрансформатора:

,
где .

В описание электромагнитных процессов в схеме автотрансформатора входят уравнения трансформатора (слева) и уравнения, которые описывают схему автотрансформатора (справа).

; ; ; . ; ; ; .

Полную мощность автотрансформатора без учета потерь можно представить в виде двух составляющих:

,
и ,
где мощность передается электромагнитным путем из первичной сети во вторичную; передается электрическим путем.

Баланс мощности при этом не нарушается:

.

В автотрансформаторе мощность , передаваемая электромагнитным путем составляет лишь часть полной мощности S, поэтому автотрансформатор обычно значительно меньше по своим размерам и дешевле, чем трансформатор, имеет более высокий КПД.

Отношение мощности передаваемой электромагнитным путем к полной мощности S называют коэффициентом выгодности:

,
где для повышающего автотрансформатора.

Применение автотрансформатора тем выгоднее, чем менее коэффициент трансформации отличается от единицы. Поэтому автотрансформаторы обычно применяются при , т.е. в случае, когда удорожание изоляции вторичной обмотки окупается общим уменьшением массы автотрансформатора и уменьшением потерь.

Под номинальной мощностью автотрансформатора понимается полная мощность .

Один из недостатков автотрансформатора – высокий ток короткого замыкания. Установившийся ток при коротком замыкании в обмотке 2:

,
где – сопротивление короткого замыкания трансформатора при короткозамкнутой обмотке 1 и питании со стороны обмотки 2; – ток короткого замыкания в обмотке 2 этого трансформатора при напряжении на обмотке 2. Таким образом, ток короткого замыкания в обмотке 2 трансформатора, включенного по автотрансформаторной схеме, в раз превышает ток короткого замыкания того же трансформатора, включенного по обычной схеме.

Читайте также:  Полезный травяной чай на каждый день

Из-за отсутствия электрической изоляции (сетевой или гальванической развязки) между первичной и вторичной обмотками трансформатора при использовании автотрансформатора в схемах понижения напряжения между проводами сети НН и землей возникает напряжение приблизительно равное напряжению между проводом и землей на стороне ВН.

Для обеспечения электробезопасности обслуживающего персонала не допускается применять автотрансформаторы для понижения напряжения сети, подводимого непосредственно к потребителям.

В энергетических системах наряду с однофазными автотрансформаторами часто применяются трехфазные двух- и трехобмоточные автотрансформаторы. Широкое распространение имеют автотрансформаторы с переменным коэффициентом трансформации – регулируемые автотрансформаторы. Принципиальная схема регулируемого лабораторного авторансформатора (ЛАТР) с сетевой развязкой показана на рисунке 1.20. Сетевая развязка обеспечивается разделительным трансформатором Т, вторичная обмотка которого не заземлена.

Рис. 1.20 Схема регулируемого лабораторного автотрансформатора АТ с гальванической развязкой через разделительный трансформатор Т.

Часть обмоток трехфазного трансфоматора может быть соединена по автотрансформатортной схеме. Так, на рисунке 1.21, показана схема трехфазного трансформатора Y0.авто/Δ-0-11 и соответствующая векторная диаграмма фазных напряжений.

Рис. 1.21. Схема соединения обмоток и соовтетствующая векторная диаграмма трехфазного трансформатора со схемой соединения обмоток Y0.авто/Δ-0-11.

Группа 0 образуется в автотрансформаторной обмотке. Группа 11 – между автотрансформаторными обмотками и обмоткой, соединенной по схеме «треугольник».

Дата добавления: 2015-11-23 ; просмотров: 1926 | Нарушение авторских прав

Внешняя характеристика трансформатора

Внешней характеристикой трансформатора называется зависимость вторичного напряжения от коэффициента нагрузки, т.е. . Внешние характеристики для различного характера нагрузки приведены на рис. 2.26.

В процессе трансформирования электрической энергии из первичной обмотки трансформатора во вторичную часть энергии теряется в самом трансформаторе на покрытие потерь.

Потери в трансформаторе разделяют на электрические и магнитные:

, (2.81)

где – суммарные потери; – электрические и магнитные трансформатора соответственно.

Электрические потери трансформатора обусловлены нагревом обмоток при прохождении по ним электрического тока и равны:

. (2.82)

Здесь – электрические потери в первичной и вторичной обмотках соответственно; m – число фаз трансформатора; m = 1 – для однофазного трансформатора, m = 3 – для трёхфазного трансформатора.

Потери в обмотках можно определить из опыта короткого замыкания как

, (2.83)

где – мощность, подводимая к первичной обмотке в режиме короткого замыкания при номинальных токах в обмотках. При этом считается, что вся подводимая активная мощность расходуется только на покрытие электрических потерь в обмотках, а магнитными потерями пренебрегают, поскольку магнитный поток в режиме короткого замыкания мал и, следовательно, магнитные потери также малы, и ими можно пренебречь.

Электрические потери зависят от величины нагрузки трансформатора и поэтому их называют переменными.

Магнитные потери происходят главным образом в магнитопроводе трансформатора. Причина появления этих потерь – систематическое перемагничивание магнитопровода переменным магнитным полем.

, (2.84)

где – потери на гистерезис, т.е. потери, связанные с перемагничиванием магнитопровода переменным магнитным полем; – потери на вихревые токи. Потери в стали зависят от свойств материала, величины индукции, частоты перемагничивания. Потери на вихревые токи также зависят и от толщины стальных листов.

Удельные потери на гистерезис можно определить как:

, (2.85)

где – постоянная, зависящая от марки стали; f – частота перемагничивания;

В – величина магнитной индукции.

Удельные потери на вихревые токи можно определить как

, (2.86)

где – постоянная, зависящая от марки стали.

Так как магнитный поток пропорционален величине подведённого напряжения, то можно считать, что магнитные потери пропорциональны квадрату напряжения.

Для снижения магнитных потерь применяют высоколегированные стали (с содержанием кремния 4 … 5%), холоднокатаные анизотропные стали, магнитные свойства которых резко улучшаются вдоль направления прокатки.

Для снижения потерь на вихревые токи уменьшают толщину листов стали и изолируют их друг от друга.

Магнитные потери определяют из опыта холостого хода (как подведённую активную мощность в режиме холостого хода при номинальном напряжении, при этом пренебрегается электрическими потерями в первичной обмотке, поскольку ток холостого хода мал):

. (2.87)

Магнитные потери не зависят от нагрузки, и поэтому называются постоянными.

Таким образом, активная мощность Р1, поступающая из сети в первичную обмотку, частично расходуется на электрические потери в первичной обмотке рэл1. Изменяющийся во времени магнитный поток вызывает магнитные потери рмг. Оставшаяся часть мощности – электромагнитная мощность Рэм – передаётся электромагнитным путём во вторичную обмотку, где расходуется на электрические потери во вторичной обмотке рэл2:

. (2.88)

В результате на выходе вторичной обмотки имеем активную мощность Р2:

. (2.89)

Все виды потерь и процесс преобразования потерь показаны на энергетической диаграмме (рис. 2.26).

Коэффициент полезного действия трансформатора – это отношение активной мощности на выходе вторичной обмотке к активной мощности на входе первичной обмотки:

, (2.90)

где – полная номинальная мощность.

Найдём, при какой нагрузке КПД достигает максимального значения. Для этого нужно взять первую производную и приравнять к нулю:

Читайте также:  Оперативная система какая лучше

, (2.91)

, (2.92)

(2.93)

Это условие получения максимума КПД. Другими словами, значение КПД максимально, если выполняется равенство:

(2.94)

(2.95)

(2.96)

Последние три утверждения равноценны и справедливы.

Иначе, из выражения (2.95), КПД достигает максимума при такой нагрузке, что

(2.97)

Для серийных силовых трансформаторов, , при этом максимум КПД . В трансформаторах небольшой мощности (десятки ВА) максимальное КПД может снижаться до . Следует также отметить, что в трансформаторах максимум КПД выражен достаточно слабо, т.е. КПД сохраняет достаточно высокое значение в широком диапазоне нагрузки (). При больших нагрузках возрастают электрические потери в обмотках, вследствие чего КПД снижается. Зависимость η = f (кнг) приведена на рис. 2.27.

Трёхфазные трансформаторы

Магнитные системы трёхфазных трансформаторов

Основные типы магнитных систем трёхфазных трансформаторов, в зависимости от конструктивного устройства магнитопровода:

— Стержневая магнитная система;

— Броневая магнитная система;

— Бронестержневая магнитная система.

Также (в зависимости от взаимосвязи потоков различных фаз) магнитные системы разделяют как:

— Связанная магнитная система.

Покажем наиболее распространённые типы трёхфазных трансформаторов.

1. Независимая магнитная система.

Трёхфазная трансформаторная группа.

Данный тип представлен на рис. 2.28. Трёхфазная трансформаторная группа получается из трёх однофазных трансформаторов, обмотки которых соединены

определённым образом. Схема соединения обмоток на рисунке – звезда/звезда (U/U).

Применяют только при очень больших мощностях (более 10 МВА в фазе). Данный тип имеет некоторые преимущества при транспортировке и монтаже. Так, при выходе из строя одного однофазного трансформатора, ремонту или замене подлежит только один однофазный трансформатор.

К недостаткам можно отнести громоздкость всей конструкции, повышенные габариты и вес, отсюда повышенная стоимость.

Применяются, например, в металлургии для обеспечения работы мощных электродуговых печей.

2. Трёхфазный броневой трансформатор.

Трёхфазный броневой трансформатор можно рассматривать как три однофазных броневых трансформатора, поставленных друг на друга. Трёхфазный броневой трансформатор представлен на рис. 2.29.

Средняя фаза имеет обратное включение по сравнению с крайними фазами, для того, чтобы потоки в ярмах суммировались. Векторная диаграмма потоков в ярме приведена на рис. 2.30. Применяются достаточно редко из-за относительной сложности конструкции.

3. Бронестержневой трансформатор.

С целью уменьшения высоты конструкции магнитопровода выполняются трансформаторы бронестержневого типа (рис. 2.31).

Трехстержневой трансформатор

Если на первичную обмотку подаётся симметричная система трёхфазных напряжений, то по обмоткам протекают симметричные системы токов, следовательно, потоки трёх фаз также образуют симметричную систему, тогда

. (2.98)

Тогда этот объединенный стержень можно убрать (рис. 2.32, б). Полученный таким образом трансформатор можно сделать более компактным, поместив все три стержня в одну плоскость (рис. 2.32, в). Получившийся трансформатор называют трёхфазным стержневым трансформатором, или трёхстержневым. Вследствие уменьшения длины магнитной цепи, по которой замыкается поток фазы В, возникает некоторая магнитная несимметрия фаз, которая обычно невелика и будет сказываться только на режиме холостого хода, в частности, на токе холостого хода, который будет меньше в средней фазе, чем в крайних.

Однако, как было показано ранее (разделы 2.4, 2.5), при нагрузке ток холостого хода оказывает малое влияние на величины токов первичной и вторичной обмоток. Таким образом, можно считать, что при симметричном питающем напряжении и нагрузке все фазы трёхфазного трансформатора находятся в одинаковых условиях. Поэтому для каждой фазы справедливы комплексные уравнения, векторные диаграммы и схемы замещения, выведенные ранее. Исключение составляет только режим холостого хода, на котором сказывается схема соединения обмоток. Конструктивное устройство трёхфазного стержневого трансформатора представлено на рис. 2.33.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10099 — | 7533 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Трансформатор является прибором, который призван преобразовывать электроэнергию сети. Эта установка имеет две или больше обмоток. В процессе своей работы трансформаторы могут преобразовать частоту и напряжение тока, а также количество фаз сети.

В ходе выполнения заданных функций наблюдаются потери мощности в трансформаторе. Они влияют на исходную величину электричества, которую выдает на выходе прибор. Что собой представляют потери и КПД трансформатора, будет рассмотрено далее.

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Читайте также:  Подключение спутниковой тарелки к телевизору без ресивера

Понятие потерь

При работе установки часть мощности поступает на первичный контур. Она рассеивается в системе. Поэтому поступающая мощность в нагрузку определяется на меньшем уровне. Разница составляет суммарное снижение мощности в трансформаторе.

Существует два вида причин, из-за которых происходит рост потребление энергии оборудованием. На них влияют различные факторы. Их делят на такие виды:

Их следует понимать, дабы иметь возможность снизить электрические потери в силовом трансформаторе.

Магнитные потери

В первом случае потери в стали магнитопривода состоят из вихревых токов и гистериза. Они прямо пропорциональны массе сердечника и его магнитной индукции. Само железо, из которого выполнен магнитопривод, влияет на эту характеристику. Поэтому сердечник изготавливают из электротехнической стали. Пластины делают тонкими. Между ними пролегает слой изоляции.

Также на снижение мощности трансформаторного устройства влияет частота тока. С ее повышением растут и магнитные потери. На этот показатель не влияет изменение нагрузки устройства.

Электрические потери

Снижение мощности может определяться в обмотках при их нагреве током. В сетях на такие затраты приходится 4-7% от общего количества потребляемой энергии. Они зависят от нескольких факторов. К ним относятся:

  • Электрическая нагрузка системы.
  • Конфигурация внутренних сетей, их длина и размер сечения.
  • Режим работы.
  • Средневзвешенный коэффициент мощности системы.
  • Расположение компенсационных устройств.

Потери мощности в трансформаторах являются величиной переменной. На нее влияет показатель квадрата тока в контурах.

Методика расчета

Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:

  • Номинальный показатель мощности системы (НМ).
  • Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
  • Потери короткого замыкания (ПКЗ).
  • Количество потребленной энергии за определенное количество времени (ПЭ).
  • Полное количество отработанных часов за месяц (квартал) (ОЧ).
  • Число отработанных часов при номинальном уровне нагрузки (НЧ).

Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.

Формула расчета

Коэффициент нагрузки в представленной методике будет определяться по следующей формуле:

К = Эа/НМ*ОЧ*cos φ, где Эа – количество активной электроэнергии.

Какие потери происходят в трансформаторе в период загрузки, можно просчитать по установленной методике. Для этого применяется формула:

П = ХХ * ОЧ * ПКЗ * К² * НЧ.

Расчет для трехобмоточных трансформаторов

Представленная выше методика применяется для оценки работы двухобмоточных трансформаторов. Для аппаратуры с тремя контурами необходимо учесть еще ряд данных. Они указываются производителем в паспорте.

В расчет включают номинальную мощность каждого контура, а также их потери короткого замыкания. При этом расчет будет производиться по следующей формуле:

Э = ЭСН + ЭНН, где Э – фактическое количество электричества, которое прошло через все контуры; ЭСН – электроэнергия контура среднего напряжения; ЭНН – электроэнергия низкого напряжения.

Пример расчета

Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.

Обозначение Расшифровка Значение
НН Номинальное напряжение, кВ 6
Эа Активная электроэнергия, потребляемая за месяц, кВи*ч 37106
НМ Номинальная мощность, кВА 630
ПКЗ Потери короткого замыкания трансформатора, кВт 7,6
ХХ Потери холостого хода, кВт 1,31
ОЧ Число отработанных часов под нагрузкой, ч 720
cos φ Коэффициент мощности 0,9

На основе полученных данных можно произвести расчет. Результат измерения будет следующий:

% потерь составляет 0,001. Их общее число равняется 0,492%.

Измерение полезного действия

При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:

КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.

Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.

В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.

Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.

Комментировать
1 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector